Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.652
Filtrar
1.
PLoS One ; 19(4): e0297572, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630788

RESUMO

BACKGROUND: Currently, it is acknowledged that vitamin E, insulin sensitizers and anti-diabetic drugs are used to manage non-alcoholic fatty liver disease (NAFLD), however, these therapeutic interventions harbour adverse side effects. Pioglitazone, an anti-diabetic drug, is currently the most effective therapy to manage NAFLD. The use of natural medicines is widely embraced due to the lack of evidence of their negative side effects. Rooibos has been previously shown to decrease inflammation and oxidative stress in experimental models of diabetes, however, this is yet to be explored in a setting of NAFLD. This study was aimed at investigating the effects of an aspalathin-rich green rooibos extract (Afriplex GRTTM) against markers of hepatic oxidative stress, inflammation and apoptosis in an in vitro model of NAFLD. METHODS: Oleic acid [1 mM] was used to induce hepatic steatosis in C3A liver cells. Thereafter, the therapeutic effect of Afriplex GRTTM, with or without pioglitazone, was determined by assessing its impact on cell viability, changes in mitochondrial membrane potential, intracellular lipid accumulation and the expression of genes and proteins (ChREBP, SREBF1, FASN, IRS1, SOD2, Caspase-3, GSTZ1, IRS1 and TNF-α) that are associated with the development of NAFLD. RESULTS: Key findings showed that Afriplex GRTTM added to the medium alone or combined with pioglitazone, could effectively block hepatic lipid accumulation without inducing cytotoxicity in C3A liver cells exposed oleic acid. This positive outcome was consistent with effective regulation of genes involved in insulin signaling, as well as carbohydrate and lipid metabolism (IRS1, SREBF1 and ChREBP). Interestingly, in addition to reducing protein levels of an inflammatory marker (TNF-α), the Afriplex GRTTM could ameliorate oleic acid-induced hepatic steatotic damage by decreasing the protein expression of oxidative stress and apoptosis related markers such as GSTZ1 and caspase-3. CONCLUSION: Afriplex GRTTM reduced hepatic steatosis in oleic acid induced C3A liver cells by modulating SREBF1, ChREBP and IRS-1 gene expression. The extract may also play a role in alleviating inflammation by reducing TNF-α expression, suggesting that additional experiments are required for its development as a suitable therapeutic option against NAFLD. Importantly, further research is needed to explore its antioxidant role in this model.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Caspase 3/metabolismo , Ácido Oleico/farmacologia , Pioglitazona/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Inflamação/metabolismo , Insulina/metabolismo , Dieta Hiperlipídica , Glutationa Transferase/metabolismo
2.
J Diabetes Complications ; 38(4): 108722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503000

RESUMO

BACKGROUNDS: Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS: The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFß-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS: Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION: These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.


Assuntos
Compostos Azo , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/uso terapêutico , Receptor 4 Toll-Like , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo
3.
Sci Rep ; 14(1): 6532, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503788

RESUMO

The increasing antimicrobial resistance requires continuous investigation of new antimicrobial agents preferably derived from natural sources. New powerful antibacterial agents can be produced by simply combining oils that are known for their antibacterial activities. In this study, apricot seed oil (ASO), date seed oil (DSO), grape seed oil (GSO), and black seed oil (BSO) alone and in binary mixtures were assessed. Fatty acid profiles of individual oils and oil mixtures showed linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid contents. Linoleic acid was the most abundant fatty acid in all samples except for ASO, where oleic acid was the dominant one. GSO showed the highest total phenolic content while ASO showed the lowest one. Antibacterial screening was performed against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Results showed antibacterial activity in all oils against tested strains except for ASO against S. aureus. Highest antibacterial activity recorded was for ASO against P. mirabilis. ASO-GSO mixture (AG) was the best mixture where it showed synergistic interactions against all strains except P. aeruginosa. In conclusion, seed oil mixtures are likely to show promising antibacterial activities against specific strains.


Assuntos
Prunus armeniaca , Vitis , Ácido Linoleico , Staphylococcus aureus , Ácidos Graxos/farmacologia , Óleos de Plantas/farmacologia , Ácido Oleico/farmacologia , Antibacterianos/farmacologia , Sementes
4.
Discov Med ; 36(182): 538-545, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38531794

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic vascular inflammatory disease resulting from vascular endothelial injury and lipid deposition, closely linked to abnormal lipid metabolism within the body. The critical processes involved in atherosclerosis encompass lipid deposition, oxidation, metabolic disruptions, and inflammatory stimulation within the inner vessel wall. Lipid deposition emerges as a pivotal factor triggering these pathological changes, with vascular smooth muscle cells (VSMCs) playing a significant role in the development of AS. Therefore, the goal was to employ lipids, specifically palmitic acid (PA) and oleic acid (OA) solutions, to stimulate VSMCs and create an in vitro atherosclerosis model. This approach allows for the establishment of a rapid and efficient cell model for simulating atherosclerosis in vitro. METHODS: Primary vascular smooth muscle cells (VSMCs) were isolated and cultured from the thoracic aorta of healthy rats using the tissue-block method. VSMCs were identified through cell climbing slices and immunofluorescence. The growth of VSMCs was observed using light microscopy. The logarithmic growth phase of VSMCs was induced and stimulated by various concentrations of palmitic acid (PA) and oleic acid (OA) ranging from 0 to 650 µmol/L, with a gradient dilution of 50 µmol/L. VSMC activity was assessed using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Intracellular lipid deposition was visualized through Oil Red O staining. The levels of total cholesterol (TC), triglyceride (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) within VSMCs were quantified using commercially available kits. RESULTS: The optimal conditions for VSMC proliferation were determined to be an OA concentration of 500 µmol/L, a PA concentration of 300 µmol/L, and a culture duration of 48 hours. In comparison to the control group, the presence of lipid droplets within VSMCs became significantly evident following treatment with OA or PA. Furthermore, the levels of TC, TG, and LDL-C increased, while the HDL-C content decreased after treatment with OA or PA. CONCLUSIONS: A research model for atherosclerosis (AS) and the early stages of cardiovascular events, specifically lipid deposition, was successfully established through the use of OA and PA solutions. This model has the potential to open up new research avenues for gaining a deeper understanding of the pathogenesis and progression of AS.


Assuntos
Aterosclerose , Ácido Palmítico , Ratos , Animais , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , LDL-Colesterol/metabolismo , Aterosclerose/metabolismo , Proliferação de Células , Células Cultivadas
5.
Exp Eye Res ; 241: 109851, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453039

RESUMO

The accumulation of oleic acid (OA) in the meibum from patients with meibomian gland dysfunction (MGD) suggests that it may contribute to meibomian gland (MG) functional disorder, as it is a potent stimulator of acne-related lipogenesis and inflammation in sebaceous gland. Therefore, we investigate whether OA induces lipogenesis and inflammasome activation in organotypic cultured mouse MG and human meibomian gland epithelial cells (HMGECs). Organotypic cultured mouse MG and HMGECs were exposed to OA or combinations with specific AMPK agonists 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Lipogenic status, ductal keratinization, squamous metaplasia, NLRP3/ASC/Caspase-1 inflammasome activation, proinflammatory cytokine IL-1ß production, and AMPK pathway phosphorylation in MG were subsequently examined by lipid staining, immunofluorescence staining, immunohistochemical staining, ELISA assay, and Western blot analyses. We found that OA significantly induced lipid accumulation, ductal keratinization, and squamous metaplasia in organotypic cultured MG, as evidenced by increased lipids deposition within acini and duct, upregulated expression of lipogenic proteins (SREBP-1 and HMGCR), and elevation of K10/Sprr1b. Additionally, OA induced NLRP3/ASC/Caspase-1 inflammasome activation, cleavage of Caspase-1, and production of downstream proinflammatory cytokine IL-1ß. The findings of lipogenesis and NLRP3-related proinflammatory response in OA-stimulated HMGECs were consistent with those in organotypic cultured MG. OA exposure downregulated phospho-AMPK in two models, while AICAR treatment alleviated lipogenesis by improving AMPK/ACC phosphorylation and SREBP-1/HMGCR expression. Furthermore, AMPK amelioration inhibited activation of the NLRP3/ASC/Caspase-1 axis and secretion of IL-1ß, thereby relieving the OA-induced proinflammatory response. These results demonstrated that OA induced lipogenic disorder and NLRP3 inflammasome activation in organotypic cultured mouse MG and HMGECs by suppressing the AMPK signaling pathway, indicating OA may play an etiological role in MGD.


Assuntos
Carcinoma de Células Escamosas , Inflamassomos , Humanos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Glândulas Tarsais/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Lipogênese , Células Epiteliais/metabolismo , Caspase 1/metabolismo , Citocinas/metabolismo , Metaplasia/metabolismo , Carcinoma de Células Escamosas/metabolismo , Interleucina-1beta/metabolismo
6.
Food Funct ; 15(4): 2103-2114, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305429

RESUMO

This study aims to introduce a new liposome to co-load Antarctic krill oil (AKO) and quercetin (QC) as a new delivery formulation to enrich the application of AKO and QC. The stability of liposomes could be increased by adding an appropriate quantity of soy lecithin (SL). Changes in the composition of the phospholipid membrane were strongly correlated with the stability and release capacity of loaded nutrients. SL2@QC/AKO-lips displayed a nearly spherical shape with higher oxidative stability and controlled the in vitro release performance of QC in simulated digestion. Moreover, in vitro studies indicated that new liposomes had no adverse effects on cell viability and could combine the physiological functions of AKO and QC to protect the HepG2 cells from oleic acid-induced steatosis and oxidative stress. The findings demonstrated that the AKO and QC co-loaded liposomes prepared with the addition of an appropriate quantity of SL had excellent loading efficiency of AKO/QC and good oxidative stability, security and functional activity.


Assuntos
Euphausiacea , Lipossomos , Animais , Lipossomos/farmacologia , Quercetina/farmacologia , Ácido Oleico/farmacologia , Óleos/farmacologia , Estresse Oxidativo , Lecitinas
7.
Clin Exp Pharmacol Physiol ; 51(4): e13845, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38382550

RESUMO

Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.


Assuntos
Apigenina , Aterosclerose , Glucuronatos , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patologia , Músculo Liso Vascular/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Aterosclerose/metabolismo , Autofagia , RNA Mensageiro/metabolismo , Miócitos de Músculo Liso/metabolismo
8.
Sci Rep ; 14(1): 3183, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326360

RESUMO

Secondary metabolites (SMs) are the primary source of therapeutics and lead chemicals in medicine. They have been especially important in the creation of effective cures for conditions such as cancer, malaria, bacterial and fungal infections, neurological and cardiovascular problems, and autoimmune illnesses. In the present study, Aspergillus pseudodeflectus AUMC 15761 was demonstrated to use wheat bran in solid state fermentation (SSF) at optimum conditions (pH 7.0 at 30 °C after 10 days of incubation and using sodium nitrate as a nitrogen source) to produce methyl ferulate and oleic acid with significant antioxidant and antibacterial properties. Gas chromatography-mass spectrometry (GC-MS) analysis of the crude methanol extract revealed eleven peaks that indicated the most common chemical components. Purification of methyl ferulate and oleic acid was carried out by column chromatography, and both compounds were identified by in-depth spectroscopic analysis, including 1D and 2D NMR and HR-ESI-MS. DPPH activity increased as the sample concentration increased. IC50 values of both compounds obtained were 73.213 ± 11.20 and 104.178 ± 9.53 µM, respectively. Also, the MIC value for methyl ferulate against Bacillus subtilis and Staphylococcus aureus was 0.31 mg/mL, while the corresponding MIC values for oleic acid were 1.25 mg/mL and 0.62 mg/mL for both bacterial strains, respectively. Molecular modeling calculations were carried out to reveal the binding mode of methyl ferulate and oleic acid within the binding site of the crucial proteins of Staphylococcus aureus. The docking results were found to be well correlated with the experimental data.


Assuntos
Antioxidantes , Aspergillus , Ácidos Cafeicos , Ácido Oleico , Antioxidantes/química , Ácido Oleico/farmacologia , Simulação de Acoplamento Molecular , Fibras na Dieta , Antibacterianos
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(3): 159452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244676

RESUMO

Very long-chain fatty acids (VLCFAs) are degraded exclusively in peroxisomes, as evidenced by the accumulation of VLCFAs in patients with certain peroxisomal disorders. Although accumulation of VLCFAs is considered to be associated with health issues, including neuronal degeneration, the mechanisms underlying VLCFAs-induced tissue degeneration remain unclear. Here, we report the toxic effect of VLCFA and protective effect of C18: 1 FA in peroxisome-deficient CHO cells. We examined the cytotoxicity of saturated and monounsaturated VLCFAs with chain-length at C20-C26, and found that longer and saturated VLCFA showed potent cytotoxicity at lower accumulation levels. Furthermore, the extent of VLCFA-induced toxicity was found to be associated with a decrease in cellular C18:1 FA levels. Notably, supplementation with C18:1 FA effectively rescued the cells from VLCFA-induced apoptosis without reducing the cellular VLCFAs levels, implying that peroxisome-deficient cells can survive in the presence of accumulated VLCFA, as long as the cells keep sufficient levels of cellular C18:1 FA. These results suggest a therapeutic potential of C18:1 FA in peroxisome disease and may provide new insights into the pharmacological effect of Lorenzo's oil, a 4:1 mixture of C18:1 and C22:1 FA.


Assuntos
Ácido Oleico , Peroxissomos , Animais , Cricetinae , Humanos , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Cricetulus , Células CHO , Ácidos Graxos não Esterificados/metabolismo , Apoptose
10.
Mol Biol Cell ; 35(3): ar33, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170618

RESUMO

Fatty acids stored in triacylglycerol-rich lipid droplets are assembled with a surface monolayer composed primarily of phosphatidylcholine (PC). Fatty acids stimulate PC synthesis by translocating CTP:phosphocholine cytidylyltransferase (CCT) α to the inner nuclear membrane, nuclear lipid droplets (nLD) and lipid associated promyelocytic leukemia (PML) structures (LAPS). Huh7 cells were used to identify how CCTα translocation onto these nuclear structures are regulated by fatty acids and phosphorylation of its serine-rich P-domain. Oleate treatment of Huh7 cells increased nLDs and LAPS that became progressively enriched in CCTα. In cells expressing the phosphatidic acid phosphatase Lipin1α or 1ß, the expanded pool of nLDs and LAPS had a proportional increase in associated CCTα. In contrast, palmitate induced few nLDs and LAPS and inhibited the oleate-dependent translocation of CCTα without affecting total nLDs. Phospho-memetic or phospho-null mutations in the P-domain revealed that a 70% phosphorylation threshold, rather than site-specific phosphorylation, regulated CCTα association with nLDs and LAPS. In vitro candidate kinase and inhibitor studies in Huh7 cells identified cyclin-dependent kinase (CDK) 1 and 2 as putative P-domain kinases. In conclusion, CCTα translocation onto nLDs and LAPS is dependent on available surface area and fatty acid composition, as well as threshold phosphorylation of the P-domain potentially involving CDKs.


Assuntos
Gotículas Lipídicas , Fosforilcolina , Ácido Oleico/farmacologia , Membrana Nuclear , Fosfatidilcolinas/química , Ácidos Graxos , Colina-Fosfato Citidililtransferase/química
11.
Cell Res ; 34(3): 232-244, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38287117

RESUMO

Although GPR3 plays pivotal roles in both the nervous system and metabolic processes, such as cold-induced thermogenesis, its endogenous ligand remains elusive. Here, by combining structural approach (including cryo-electron microscopy), mass spectrometry analysis, and functional studies, we identify oleic acid (OA) as an endogenous ligand of GPR3. Our study reveals a hydrophobic tunnel within GPR3 that connects the extracellular side of the receptor to the middle of plasma membrane, enabling fatty acids to readily engage the receptor. Functional studies demonstrate that OA triggers downstream Gs signaling, whereas lysophospholipids fail to activate the receptor. Moreover, our research reveals that cold stimulation induces the secretion of OA in mice, subsequently activating Gs/cAMP/PKA signaling in brown adipose tissue. Notably, brown adipose tissues from Gpr3 knockout mice do not respond to OA during cold stimulation, reinforcing the significance of GPR3 in this process. Finally, we propose a "born to be activated and cold to enhance" model for GPR3 activation. Our study provides a starting framework for the understanding of GPR3 signaling in cold-stimulated thermogenesis.


Assuntos
Tecido Adiposo Marrom , Ácido Oleico , Receptores Acoplados a Proteínas G , Animais , Camundongos , Membrana Celular , Microscopia Crioeletrônica , Ligantes , Camundongos Knockout , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
12.
Biol Pharm Bull ; 47(1): 145-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171774

RESUMO

Elevated concentration of saturated fatty acids in plasma adversely affects pancreatic ß-cells, but the effects of unsaturated fatty acids are controversial. In this study, we examined the effects of oleic acid (OA), a monounsaturated fatty acid, on mitochondrial function, which is important for insulin secretion, using INS-1 cells, a pancreatic ß-cell line derived from rats. Observations of mitochondrial membrane potential and intracellular ATP concentration showed that the electron transport chain was enhanced and ATP production increased in cells treated with OA, indicating that the response that occurs from sensing an increase in glucose concentration to the production of ATP was accelerated. Measurements of intracellular reactive oxygen species (ROS) indicated that the rate of increase in ROS after glucose stimulation was significantly higher in OA-treated cells. The mRNA expression levels of superoxide dismutase 1 and 2, which are responsive to ROS and other substances, were significantly increased in OA 1-d treated cells, but decreased in OA 7-d treated cells. It can be inferred that continued exposure to high concentrations of OA reduced ROS processing capacity and increased intracellular ROS levels. The mRNA expression of apoptosis-inducing enzyme Caspase-3 was significantly increased in OA-treated cells, although its activity was not high. However, the apoptosis induction rate after H2O2 stimulation was significantly higher in OA-treated cells. The high OA environment was shown to promote mitochondrial energy metabolism, leading to an increase in glucose sensitivity and a decrease in oxidative stress resistance.


Assuntos
Peróxido de Hidrogênio , Ácido Oleico , Ratos , Animais , Ácido Oleico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Mitocôndrias , Metabolismo Energético , Glucose/metabolismo , Linhagem Celular , Trifosfato de Adenosina/metabolismo , RNA Mensageiro/metabolismo , Insulina/metabolismo
13.
J Transl Med ; 22(1): 82, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245790

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácido Tióctico , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Endorribonucleases/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Hepatócitos/patologia , Senescência Celular , Inflamação/patologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Fígado/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo
14.
Sci Rep ; 14(1): 2162, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272980

RESUMO

Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.


Assuntos
Lipopolissacarídeos , Síndrome do Desconforto Respiratório , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/patologia , Ácido Oleico/farmacologia , Fenótipo , Síndrome do Desconforto Respiratório/patologia , Ovinos , Carneiro Doméstico , Tomografia
15.
J Oleo Sci ; 73(2): 215-218, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38233114

RESUMO

Microbial conversion of some natural unsaturated fatty acids can produce polyhydroxy fatty acids, giving them new properties, such as higher viscosity and reactivity. Pseudomonas aeruginosa has been intensively studied to produce a novel 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) from oleic acid and natural vegetable oils containing oleic acid. Recently, the antibacterial activities of DOD against food-borne pathogenic bacteria were reported; however, the action of such antibacterial properties against eucaryotic cells remains poorly known. In this study, we determined the antifungal activities of DOD against Malassezia furfur KCCM 12679 quantitatively and qualitatively. The antifungal activity of DOD against M. furfur KCCM 12679 was approximately five times higher than that of ketoconazole, a commercial antifungal agent. The MIC 90 value of DOD against M. furfur KCCM 12679 was 50 µg/mL. In addition, we confirmed that the antifungal property of DOD was exerted through fungicidal activity.


Assuntos
Malassezia , Ácidos Oleicos , Antifúngicos/farmacologia , Ácido Oleico/farmacologia , Antibacterianos , Testes de Sensibilidade Microbiana
16.
Mol Pharm ; 21(3): 1300-1308, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38294949

RESUMO

Keratin and lipid structures in the stratum corneum (SC) are closely related to the SC barrier function. The application of penetration enhancers (PEs) disrupts the structure of SC, thereby promoting infiltration. To quantify these PE-induced structural changes in SC, we used confocal Raman imaging (CRI) and polarized Raman imaging (PRI) to explore the integrity and continuity of keratin and lipid structures in SC. The results showed that water is the safest PE and that oleic acid (OA), sodium dodecyl sulfate (SDS), and low molecular weight protamine (LMWP) disrupted the ordered structure of keratin, while azone and liposomes had less of an effect on keratin. Azone, OA, and SDS also led to significant changes in lipid structure, while LMWP and liposomes had less of an effect. Establishing this non-invasive and efficient strategy will provide new insights into transdermal drug delivery and skin health management.


Assuntos
Lipossomos , Pele , Lipossomos/farmacologia , Epiderme , Ácido Oleico/farmacologia , Queratinas
17.
Sci Rep ; 14(1): 755, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191891

RESUMO

Skeletal muscle is one of the largest metabolic tissues in mammals and is composed of four different types of muscle fibers (types 1, 2A, 2X, and 2B); however, type 2B is absent in humans. Given that slow-twitch fibers are superior to fast-twitch fibers in terms of oxidative metabolism and are rich in mitochondria, shift of muscle fiber types in direction towards slower fiber types improves metabolic disorders and endurance capacity. We previously had reported that oleic acid supplementation increases type 1 fiber formation in C2C12 myotubes; however, its function still remains unclear. This study aimed to determine the effect of oleic acid on the muscle fiber types and endurance capacity. An in vivo mouse model was used, and mice were fed a 10% oleic acid diet for 4 weeks. Two different skeletal muscles, slow soleus muscle with the predominance of slow-twitch fibers and fast extensor digitorum longus (EDL) muscle with the predominance of fast-twitch fibers, were used. We found that dietary oleic acid intake improved running endurance and altered fiber type composition of muscles, the proportion of type 1 and 2X fibers increased in the soleus muscle and type 2X increased in the EDL muscle. The fiber type shift in the EDL muscle was accompanied by an increased muscle TAG content. In addition, blood triacylglycerol (TAG) and non-esterified fatty acid levels decreased during exercise. These changes suggested that lipid utilization as an energy substrate was enhanced by oleic acid. Increased proliferator-activated receptor γ coactivator-1ß protein levels were observed in the EDL muscle, which potentially enhanced the fiber type transitions towards type 2X and muscle TAG content. In conclusion, dietary oleic acid intake improved running endurance with the changes of muscle fiber type shares in mice. This study elucidated a novel functionality of oleic acid in skeletal muscle fiber types. Further studies are required to elucidate the underlying mechanisms. Our findings have the potential to contribute to the field of health and sports science through nutritional approaches, such as the development of supplements aimed at improving muscle function.


Assuntos
Fibras Musculares Esqueléticas , Ácido Oleico , Humanos , Animais , Camundongos , Ácido Oleico/farmacologia , Músculo Esquelético , Respiração Celular , Suplementos Nutricionais , Mamíferos
18.
PLoS One ; 19(1): e0296756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38206944

RESUMO

The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.


Assuntos
Antimaláricos , Malária , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Antimaláricos/química , Ácido Linoleico , Ácido Oleico/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Malária/tratamento farmacológico , Misturas Complexas/farmacologia , Plasmodium berghei
19.
Cell Chem Biol ; 31(2): 249-264.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944523

RESUMO

Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.


Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres Fosfolipídicos
20.
Cancer Sci ; 115(1): 48-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879607

RESUMO

We previously reported that the inhibition of stearoyl-CoA desaturase 1 (SCD1) enhances the antitumor function of CD8+ T cells indirectly via restoring production of DC recruiting chemokines by cancer cells and subsequent induction of antitumor CD8+ T cells. In this study, we investigated the molecular mechanism of direct enhancing effects of SCD1 inhibitors on CD8+ T cells. In vitro treatment of CD8+ T cells with SCD1 inhibitors enhanced IFN-γ production and cytotoxic activity of T cells along with decreased oleic acid and esterified cholesterol, which is generated by cholesterol esterase, acetyl-CoA acetyltransferase 1 (ACAT1), in CD8+ T cells. The addition of oleic acid or cholesteryl oleate reversed the enhanced functions of CD8+ T cells treated with SCD1 inhibitors. Systemic administration of SCD1 inhibitor to MCA205 tumor-bearing mice enhanced IFN-γ production of tumor-infiltrating CD8+ T cells, in which oleic acid and esterified cholesterol, but not cholesterol, were decreased. These results indicated that SCD1 suppressed effector functions of CD8+ T cells through the increased esterified cholesterol in an ACAT1-dependent manner, and SCD1 inhibition enhanced T cell activity directly through decreased esterified cholesterol. Finally, SCD1 inhibitors or ACAT1 inhibitors synergistically enhanced the antitumor effects of anti-PD-1 antibody therapy or CAR-T cell therapy in mouse tumor models. Therefore, the SCD1-ACAT1 axis is regulating effector functions of CD8+ T cells, and SCD1 inhibitors, and ACAT1 inhibitors are attractive drugs for cancer immunotherapy.


Assuntos
Neoplasias , Ácido Oleico , Camundongos , Animais , Ácido Oleico/farmacologia , Linfócitos T CD8-Positivos , Acetiltransferases , Colesterol , Estearoil-CoA Dessaturase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...